Collective Dynamics of Kinesin-1

نویسندگان

  • Adam G. Hendricks
  • Alan J. Hunt
  • Ming-Tse Kao
  • Neha Kaul
  • Troy Lionberger
  • Arjun Krishnan
چکیده

Motor proteins are the engines of biology, converting chemical energy to mechanical work in cells. Kinesin-1 is a motor protein that transports vesicles towards the plus end of microtubules, widely believed to be responsible for anterograde transport of synaptic vesicles in neurons. Advances in single-molecule techniques have allowed the characterization of single kinesin motors in vitro at a range of loads and ATP concentrations. Single kinesin motors are capable of processive movement along the microtubule at a maximum velocity of approximately 1 μm/s. The velocity decreases roughly linearly in response to load until reaching stall at a load of approximately 6 pN. Several theoretical models have been proposed that describe the steady-state motion of single kinesin motors. However, growing evidence suggests that kinesin functions collectively in cells, whereby several motors work in a coordinated manner to transport a vesicle. A transient description is required to describe collective dynamics, as the interactions among coupled motors induce time-varying forces on each motor. Herein a mechanistic model of kinesin is proposed that is capable of accurately describing transient and steady-state dynamics. Each domain of the protein is modeled via a mechanical potential. The mechanical potentials are related explicitly to the chemical kinetics of each motor domain. The mechanistic model was used to simulate the collective behavior of coupled kinesin motors under varying loads, cargo linker stiffnesses, and numbers of motors. To analyze the simulations of coordinated transport, several metrics were developed that are specifically tai-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational modelling of the collective stochastic motion of Kinesin nano motors

We have developed a two dimensional stochastic molecular dynamics model for the description of intra cellular collective motion of bio motors, in particular Kinesins, on a microtubular track. The model is capable or reproducing the hand-over-hand mechanism of the directed motion along the microtubule. The model gives the average directed velocity and the current of Kinesins along the microtubul...

متن کامل

Depletion force induced collective motion of microtubules driven by kinesin.

Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal fila...

متن کامل

How the interplay between mechanical and nonmechanical interactions affects multiple kinesin dynamics.

Intracellular transport is supported by enzymes called motor proteins that are often coupled to the same cargo and function collectively. Recent experiments and theoretical advances have been able to explain certain behaviors of multiple motor systems by elucidating how unequal load sharing between coupled motors changes how they bind, step, and detach. However, nonmechanical interactions are t...

متن کامل

Processive kinesins require loose mechanical coupling for efficient collective motility.

Processive motor proteins are stochastic steppers that perform actual mechanical steps for only a minor fraction of the time they are bound to the filament track. Motors usually work in teams and therefore the question arises whether the stochasticity of stepping can cause mutual interference when motors are mechanically coupled. We used biocompatible surfaces to immobilize processive kinesin-1...

متن کامل

Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions.

Molecular motors often work collectively inside the cell. While the properties of individual motors have been extensively studied over the last decade, much less is known on how motors coordinate their action when working in ensembles. The motor collective behaviour in conditions where they contact each other, as in intracellular transport, may strongly depend on their mutual interactions. In p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008